真空計(jì)量的現(xiàn)狀及發(fā)展趨勢(shì)
1引言
解決其真空測(cè)量和校準(zhǔn)問(wèn)題,真空計(jì)量要滿足在真空應(yīng)用中量大面廣的實(shí)際需要。可以為真空應(yīng)用提供計(jì)量服務(wù)和技術(shù)保障。正是真空應(yīng)用對(duì)真空計(jì)量不斷增長(zhǎng)的需要和越來(lái)越高的要求,促進(jìn)了真空計(jì)量學(xué)的發(fā)展,使真空計(jì)量的研究領(lǐng)域不時(shí)擴(kuò)充,量程不斷延伸,精度不時(shí)提高。真空計(jì)量已成為計(jì)量學(xué)一個(gè)新的獨(dú)立分支,國(guó)際上得到供認(rèn)。
真空計(jì)量中三個(gè)基本物理量是真空度(全壓力p和分壓力pi氣體微流量(Q和抽速(S真空計(jì)量的主要研究?jī)?nèi)容為:1真空度(全壓力)丈量與校準(zhǔn);2真空質(zhì)譜分析、分壓力的丈量與校準(zhǔn);3氣體微流量(或漏率)丈量與校準(zhǔn);4真空泵的抽速測(cè)量。
包括理論和實(shí)踐的各個(gè)方面。計(jì)量學(xué)中,真空計(jì)量學(xué)是有關(guān)真空丈量和校準(zhǔn)的知識(shí)領(lǐng)域。計(jì)量規(guī)范不是一臺(tái)臺(tái)孤立的儀器和設(shè)備,而是一個(gè)個(gè)完整的統(tǒng)一的有機(jī)的體系。建立國(guó)家級(jí)計(jì)量規(guī)范,要求不同區(qū)域(或不同實(shí)驗(yàn)室)相同類型(或不同類型)計(jì)量規(guī)范之間以相互標(biāo)準(zhǔn)作為基礎(chǔ)。
許多國(guó)家建立了真空計(jì)量中心,國(guó)際上。建立了國(guó)家級(jí)真空計(jì)量規(guī)范,形成了真空量值傳遞系統(tǒng)。真空計(jì)量規(guī)范的國(guó)際化比對(duì),真空計(jì)量學(xué)發(fā)展的重要階段,真空量值統(tǒng)一的中心工作。國(guó)際規(guī)范化組織(ISO設(shè)立的真空科學(xué)技術(shù)委員會(huì)(TC公布了一系列有關(guān)真空計(jì)量方面的國(guó)際規(guī)范和國(guó)家標(biāo)準(zhǔn)文件,促進(jìn)了國(guó)際范圍內(nèi)真空量值的統(tǒng)一。[1]
國(guó)際計(jì)量局(BIPM組織下,1980年以來(lái)。世界范圍內(nèi)開(kāi)展了統(tǒng)一真空度量值的工作,歷時(shí)近10年,12個(gè)國(guó)家級(jí)真空標(biāo)準(zhǔn)參加了以德國(guó)PTB真空規(guī)范為核心的國(guó)際比對(duì)。1987~1989站參加了這一國(guó)際比對(duì),比對(duì)結(jié)果一致性小于1.5%優(yōu)于12個(gè)國(guó)際比對(duì) 2%平均值。爾后,站還與意大利 IMGC美國(guó)NIST等進(jìn)行了多次真空量值的直接或間接比對(duì),均取得了良好的一致性。
真空計(jì)量的研究重點(diǎn)放在氣體微流量和分壓力的丈量與校準(zhǔn)上,1990年以來(lái)。建立了相應(yīng)的計(jì)量規(guī)范,開(kāi)展了國(guó)際間真空漏孔的比對(duì)工作。1980~1999年,站與國(guó)家計(jì)量研究院先后進(jìn)行了三輪真空漏孔的國(guó)內(nèi)比對(duì),取得了較好的結(jié)果,具備了開(kāi)展國(guó)際比對(duì)的條件。站正在與美國(guó)NIST進(jìn)行規(guī)范漏孔的國(guó)際比對(duì),與國(guó)際上統(tǒng)一漏率量值,以保證漏率量值的校準(zhǔn)精度。
站已建立了較完整的真空度(全壓力)分壓力和氣體微流量(或漏率)計(jì)量規(guī)范體系,目前。建成了國(guó)防真空校準(zhǔn)實(shí)驗(yàn)室,基本上滿足了真空應(yīng)用對(duì)真空計(jì)量的需求。
2真空度(全壓力)丈量與校準(zhǔn)
真空度(全壓力)丈量與校準(zhǔn)占有十分重要的地位,真空計(jì)量中。分壓力、氣體微流量(或漏率)計(jì)量的基礎(chǔ),技術(shù)上相對(duì)比較成熟,真空應(yīng)用中占有較大的比重。
2.1真空度(全壓力)丈量
目前,真空度測(cè)量方面。已有從105Pa壓力到極高真空(10-11Pa各種真空計(jì),有工業(yè)化的產(chǎn)品。當(dāng)今,根據(jù)真空應(yīng)用中對(duì)真空計(jì)使用要求,國(guó)際上真空計(jì)的新產(chǎn)品正在向小型化、一體化、集成化、系統(tǒng)化和智能化的方向發(fā)展。小型化是指真空計(jì)的體積越來(lái)越小;一體化是指真空計(jì)丈量單元與規(guī)管集成為一體;集成化是指將多臺(tái)真空計(jì)組合成一臺(tái);系統(tǒng)化是指將真空度測(cè)量與控制相結(jié)合;智能化是指真空計(jì)具有自我診斷、自我維護(hù)、自動(dòng)操作、數(shù)據(jù)采集與處理的綜合功能。
一體化和集成化的基礎(chǔ)。小型化使真空計(jì)便于安裝;一體化提高了真空計(jì)的丈量精度;集成化擴(kuò)展了真空計(jì)的丈量范圍,真空計(jì)小型化是電子技術(shù)的產(chǎn)物。適合于真空系統(tǒng)中的實(shí)際應(yīng)用;系統(tǒng)化滿足了工業(yè)自動(dòng)化控制的要求;智能化使真空計(jì)便于操作和使用。真空計(jì)的這些特點(diǎn)和發(fā)展趨勢(shì)值得關(guān)注。
2.2真空度(全壓力)校準(zhǔn)
從粗低真空、中真空到高真空等區(qū)域內(nèi)的絕對(duì)真空規(guī)范裝置都已經(jīng)建立;具有可從105Pa壓力到極高真空(10-10Pa校準(zhǔn)的各種真空計(jì),真空度的校準(zhǔn)方面。開(kāi)展了國(guó)家級(jí)真空計(jì)量規(guī)范之間的直接和間接。
各國(guó)相繼建立了許多不同類型的真空度標(biāo)準(zhǔn),20世紀(jì)60年代是真空度標(biāo)準(zhǔn)發(fā)展時(shí)期。初步開(kāi)展了一國(guó)之內(nèi)的真空規(guī)范之間的互校,逐步建成了國(guó)家級(jí)真空度標(biāo)準(zhǔn)和形成了國(guó)家真空計(jì)量中心。20世紀(jì)70年代是真空度標(biāo)準(zhǔn)深入發(fā)展時(shí)期,從實(shí)踐和理論兩個(gè)方面對(duì)真空標(biāo)準(zhǔn)的丈量不確定度進(jìn)行了仔細(xì)地探討,繼續(xù)開(kāi)展了一國(guó)之內(nèi)的真空度標(biāo)準(zhǔn)的互校,逐步開(kāi)展了國(guó)際間真空度標(biāo)準(zhǔn)的比對(duì)工作。20世紀(jì)80年代以后,通過(guò)開(kāi)展國(guó)際間真空度標(biāo)準(zhǔn)的比對(duì),不時(shí)完善和提高已有真空標(biāo)準(zhǔn)的丈量精度。延伸了真空校準(zhǔn)下限,建立了超高和極高真空校準(zhǔn)裝置。如德國(guó)PTB建立了分子束法校準(zhǔn)系統(tǒng),校準(zhǔn)下限為10-10Pa[2]
真空計(jì)量技術(shù)與國(guó)際上同步發(fā)展。20世紀(jì)60年代,國(guó)內(nèi)。站開(kāi)始研制從低真空到超高真空較完整的玻璃真空規(guī)范裝置系列,即壓縮式真空計(jì)標(biāo)準(zhǔn)裝置、低真空膨脹式標(biāo)準(zhǔn)裝置、高真空膨脹式標(biāo)準(zhǔn)裝置、小孔流導(dǎo)法超高真空標(biāo)準(zhǔn)裝置,為真空計(jì)量一級(jí)站的發(fā)展奠定了基礎(chǔ)。
國(guó)防真空計(jì)量技術(shù)加速發(fā)展,自從1983年國(guó)防科工委組建國(guó)防計(jì)量體系以來(lái)。也是站發(fā)展最迅速的一個(gè)時(shí)期。通過(guò)“七五”八五”和“九五”3個(gè)五年計(jì)劃的建設(shè)發(fā)展,站已研制建立了精密壓力計(jì)、金屬膨脹式真空計(jì)量標(biāo)準(zhǔn)、程控式真空規(guī)校準(zhǔn)裝置、真空規(guī)比對(duì)法校準(zhǔn)裝置等真空標(biāo)準(zhǔn)裝置,形成了全壓力真空計(jì)量標(biāo)準(zhǔn)的體系,可在105~10-7Pa真空度范圍內(nèi)對(duì)各種類型的真空計(jì)進(jìn)行校準(zhǔn)。
形成了真空量值的傳送網(wǎng),站十分重視國(guó)防真空計(jì)量體系的建設(shè)。由國(guó)防科工委真空計(jì)量一級(jí)站、2個(gè)真空計(jì)量二級(jí)站組成的較完整的國(guó)防真空計(jì)量量值傳遞體系,使真空量值的傳送渠道疏通,保證了真空量值的準(zhǔn)確與統(tǒng)一。
需要開(kāi)展超高、極高真空校準(zhǔn)技術(shù)的研究,為了延伸真空的校準(zhǔn)下限。使真空校準(zhǔn)下限達(dá)到10-10Pa以滿足超高和極高真空校準(zhǔn)需求。
3氣體微流量(或漏率)丈量與校準(zhǔn)
提出了氣體微流量(或漏率)丈量與校準(zhǔn),隨著真空計(jì)量向準(zhǔn)確、精密和更深層次的發(fā)展。建立氣體微流量(或漏率)計(jì)量規(guī)范,已成為真空計(jì)量學(xué)研究的重要內(nèi)容。
精確丈量氣體微流量(或漏率)和建立氣體微流量(或漏率)計(jì)量規(guī)范是十分重要的例如,實(shí)際應(yīng)用中。為了堅(jiān)持飛船艙內(nèi)的壓力臨時(shí)工作正常,不但要找到漏孔位置,還要精確丈量微小的漏率,這對(duì)于長(zhǎng)期在空間飛行的載人飛船尤為重要。火箭燃料是易燃、易爆、有毒的氣體或液體,微小的泄漏具有很大的危險(xiǎn)性,為此要對(duì)火箭燃料的加注過(guò)程和發(fā)射陣地進(jìn)行安全檢測(cè)。電子工業(yè)中的半導(dǎo)體元件、集成電路、計(jì)算機(jī)芯片的生產(chǎn)工藝中,要求精確控制氣體微流量的注入,以保證工藝質(zhì)量和產(chǎn)品性能的穩(wěn)定。
雖然起步較晚,國(guó)內(nèi)外對(duì)氣體微流量(或漏率)丈量與校準(zhǔn)的研究。但是隨著理論研究的深入和實(shí)踐經(jīng)驗(yàn)的積累,使之氣體微流量(或漏率)丈量與校準(zhǔn)的難度和存在問(wèn)題有了更具體和更深刻的認(rèn)識(shí)。近年來(lái)又投入了更大的人力和財(cái)力,從事更先進(jìn)的氣體微流量標(biāo)準(zhǔn)的研制,進(jìn)一步提高了校準(zhǔn)精度,延伸了校準(zhǔn)的下限。
3.1 真空漏孔校準(zhǔn)
國(guó)內(nèi)外在真空漏孔的校準(zhǔn)方面做了大量的研究工作,近十多年來(lái)。建立了一系列的氣體微流量標(biāo)準(zhǔn),對(duì)真空漏孔進(jìn)行了校準(zhǔn)。美國(guó)國(guó)家規(guī)范技術(shù)研究院NIST先后研制了二代恒壓式微流量標(biāo)準(zhǔn),校準(zhǔn)范圍210-3~210-8Pam3/并正在準(zhǔn)備研制第三代氣體微流量標(biāo)準(zhǔn)。德國(guó)物理技術(shù)研究院(PTB先后研制了恒壓式和定容式氣體微流量標(biāo)準(zhǔn),校準(zhǔn)范圍分別為210-3~210-9Pam3/和110-4~110-8Pam3/意大利計(jì)量研究院(IMGC先后研制了二代恒壓式氣體微流量標(biāo)準(zhǔn),校準(zhǔn)范圍310-5~310-8Pam3/1998年,中國(guó)計(jì)量研究院研制了定容式流量標(biāo)準(zhǔn),校準(zhǔn)范圍210-4~510-9Pam3/1994年,站建成一臺(tái)恒壓式氣體微流量標(biāo)準(zhǔn)裝置,校準(zhǔn)范圍110-3~10-8[3]
氣體微流量規(guī)范只能校準(zhǔn)漏率值較大的真空漏孔,但是質(zhì)譜檢漏儀使用的真空漏孔大多在210-3~210-11Pam3/漏率范圍內(nèi)。無(wú)法校準(zhǔn)漏率值小于110-8Pam3/漏孔。若采用相對(duì)法校準(zhǔn)真空漏孔時(shí),校準(zhǔn)結(jié)果則取決于四極質(zhì)譜計(jì)的線性,因?yàn)樗臉O質(zhì)譜計(jì)的線性較差,使得校準(zhǔn)真空漏孔的不確定度非常大。
可以得出解決較小漏率的真空漏孔校準(zhǔn)問(wèn)題和減小測(cè)量不確定度,通過(guò)對(duì)氣體微流量(或漏率)校準(zhǔn)技術(shù)研究。才干滿足對(duì)真空漏孔精確校準(zhǔn)的需求。
3.2正壓漏孔校準(zhǔn)
正壓檢漏技術(shù)已被廣泛地采用,最常用的皂泡法和水泡法。由于對(duì)正壓檢漏的可靠性提出了更高的要求,采用了質(zhì)譜檢漏技術(shù),要用正壓漏孔對(duì)質(zhì)譜檢漏儀進(jìn)行標(biāo)定,從而提出了正壓漏孔的校準(zhǔn)問(wèn)題。國(guó)內(nèi)外對(duì)真空漏孔,漏孔的一端為大氣壓,另一端為真空的校準(zhǔn)技術(shù)研究比較幼稚,已經(jīng)研制了多種校準(zhǔn)裝置,并在不同規(guī)范裝置間進(jìn)行了比對(duì)研究。但是對(duì)于正壓漏孔的校準(zhǔn),因受到正壓檢漏定量性差和校準(zhǔn)條件比較苛刻的局限,使之研究工作才剛剛開(kāi)始。通過(guò)對(duì)各種真空漏孔和正壓漏孔的校準(zhǔn)方法進(jìn)行了比較和分析,提出了正壓漏孔的校準(zhǔn)方法;利用已建成的氣體微流量標(biāo)準(zhǔn)裝置和現(xiàn)有的儀器設(shè)備,對(duì)正壓漏孔的校準(zhǔn)方法進(jìn)行了實(shí)驗(yàn)研究。大量的理論分析和實(shí)驗(yàn)研究的基礎(chǔ)上,研制了正壓漏孔校準(zhǔn)裝置。正壓漏孔校準(zhǔn)裝置可采用定容法和定量氣體動(dòng)態(tài)比較法對(duì)正壓漏孔進(jìn)行校準(zhǔn)。定容法的校準(zhǔn)范圍為1102~510-3PaL/丈量中的不確定度為2.58%~9.10%定量氣體動(dòng)態(tài)比較法的校準(zhǔn)范圍為210-2~510-3PaL/s,航天產(chǎn)品研制和生產(chǎn)中。丈量不確定度小于14.2%
解決了累積氣體中未知示漏氣體的定標(biāo)問(wèn)題,正壓漏孔校準(zhǔn)中采用了定量氣體法。并延伸校準(zhǔn)下限二個(gè)數(shù)量級(jí),解決了較小漏率的正壓漏孔的校準(zhǔn)問(wèn)題[4]
|